MENU

1994世界杯_1954年世界杯 - hengshuifu.com

刚体运动 Rigid Body Motion

刚性运动(rigid motion)

物体的连续运动,且在任意时刻

t

t

t,物体上两点距离不变,

p

(

t

)

q

(

t

)

=

p

(

0

)

q

(

0

)

||p(t) - q(t)||=||p(0)-q(0)||

∣∣p(t)−q(t)∣∣=∣∣p(0)−q(0)∣∣

刚性位移(rigid displacement)

物体在刚体运动前后的变化,包括平移(translation)和旋转(rotation)

g

:

R

3

R

3

g:R^3 \rightarrow R^3

g:R3→R3表示。

自由向量,

v

=

q

p

v = q-p

v=q−p,不和刚体某点绑定。

g

(

v

)

=

g

(

q

)

g

(

p

)

g_*(v) = g(q)-g(p)

g∗​(v)=g(q)−g(p)

刚体变换(rigid body transformation)

用作表示刚性运动中,物体坐标系的瞬时位置和方位。定义

刚性位移前后,点对的距离不变,

g

(

p

)

g

(

q

)

=

p

q

||g(p)-g(q)||=||p-q||

∣∣g(p)−g(q)∣∣=∣∣p−q∣∣刚性位移前后,向量角度关系不变,

g

(

v

×

w

)

=

g

(

v

)

×

g

(

w

)

g_*(v\times w) = g_*(v) \times g_*(w)

g∗​(v×w)=g∗​(v)×g∗​(w) 主要剔除镜像映射的情况,虽然距离不变,但是物理上不可达

v

1

+

v

2

=

g

(

v

1

)

+

g

(

v

2

)

||v_1 + v_2|| = ||g_*(v_1) + g_*(v_2)||

∣∣v1​+v2​∣∣=∣∣g∗​(v1​)+g∗​(v2​)∣∣

v

1

v

2

=

g

(

v

1

)

g

(

v

2

)

||v_1 - v_2|| = ||g_*(v_1) - g_*(v_2)||

∣∣v1​−v2​∣∣=∣∣g∗​(v1​)−g∗​(v2​)∣∣

v

1

T

v

2

=

g

(

v

1

)

T

g

(

v

2

)

v_1^Tv_2 = g_*(v_1)^Tg_*(v_2)

v1T​v2​=g∗​(v1​)Tg∗​(v2​)

旋转

刚体运动下,物体点之间还是可以存在相对运动,就是旋转。 将坐标系绑定在物体某个点上,得到物体坐标系(body coordinate frame),并通过计算物体坐标系和某固定坐标系的运动关系来表示物体的布局(configuration)。

旋转矩阵

R

a

b

=

[

x

a

b

y

a

b

z

a

b

]

R_{ab} = \left[ \begin{array}{c} x_{ab} & y_{ab} & z_{ab} \end{array} \right]

Rab​=[xab​​yab​​zab​​],表示坐标系B的主轴在坐标系A中的坐标(B转A)。

R

a

b

S

O

(

3

)

R_{ab}\in SO(3)

Rab​∈SO(3),特殊正交矩阵(special orthogonal),

R

T

=

R

1

R^T=R^{-1}

RT=R−1,

d

e

t

(

R

)

=

1

det(R)=1

det(R)=1。

x

^

=

[

0

x

3

x

2

x

3

0

x

1

x

2

x

1

0

]

\hat{x} = \left[ \begin{array}{c} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{array} \right]

x^=⎣⎡​0x3​−x2​​−x3​0x1​​x2​−x1​0​⎦⎤​,斜对称(skew-symmetric),

x

^

T

=

x

^

s

o

(

3

)

\hat{x}^T = -\hat{x} \in so(3)

x^T=−x^∈so(3)

x

×

y

=

x

^

y

x \times y = \hat{x} y

x×y=x^y

(

v

+

w

)

^

=

v

^

+

w

^

\hat{(v+w)} = \hat{v} + \hat{w}

(v+w)^​=v^+w^

R

w

^

R

T

=

R

w

^

R \hat{w} R^T = \hat{Rw}

Rw^RT=Rw^

旋转向量(指数坐标)

旋转轴

ω

s

o

(

3

)

\omega \in so(3)

ω∈so(3),转角

θ

\theta

θ 通过线速度和角速度的关系

q

˙

(

t

)

=

θ

˙

r

=

ω

×

q

(

t

)

\dot{q}(t) = \dot{\theta}r = \omega \times q(t)

q˙​(t)=θ˙r=ω×q(t),其中使用常数单位时间角速度

θ

˙

=

1

\dot{\theta}=1

θ˙=1 差分方程积分得到

q

(

t

)

=

e

ω

^

t

q

(

0

)

q(t) = e^{\hat{\omega}t}q(0)

q(t)=eω^tq(0)

旋转向量 to 旋转矩阵

泰勒展开

e

ω

^

t

=

I

+

ω

^

t

+

(

ω

^

t

)

2

2

!

+

.

.

.

e^{\hat{\omega}t}=I + \hat{\omega}t + \frac{(\hat{\omega}t)^2}{2!} + ...

eω^t=I+ω^t+2!(ω^t)2​+...

a

^

2

=

a

a

T

a

2

I

\hat{a}^2 = aa^T-||a||^2I

a^2=aaT−∣∣a∣∣2I

a

^

3

=

a

2

a

^

\hat{a}^3 = -||a||^2\hat{a}

a^3=−∣∣a∣∣2a^

代入

t

=

θ

t=\theta

t=θ,

θ

\theta

θ个单位时间,有

e

ω

^

θ

=

I

+

ω

^

θ

+

(

ω

^

θ

)

2

2

!

+

.

.

.

e^{\hat{\omega}\theta}=I + \hat{\omega}\theta + \frac{(\hat{\omega}\theta)^2}{2!} + ...

eω^θ=I+ω^θ+2!(ω^θ)2​+...

=

I

+

(

θ

θ

3

3

!

+

θ

5

5

!

.

.

.

)

ω

^

+

(

θ

2

2

!

θ

4

4

!

+

θ

6

6

!

.

.

.

)

ω

^

2

=I + (\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}-...)\hat{\omega} + (\frac{\theta^2}{2!}-\frac{\theta^4}{4!}+\frac{\theta^6}{6!}-...)\hat{\omega}^2

=I+(θ−3!θ3​+5!θ5​−...)ω^+(2!θ2​−4!θ4​+6!θ6​−...)ω^2

=

I

+

ω

^

sin

θ

+

ω

^

2

(

1

cos

θ

)

=I + \hat{\omega}\sin\theta + \hat{\omega}^2(1-\cos\theta)

=I+ω^sinθ+ω^2(1−cosθ)

罗德里格公式(Rodrigues‘ formula)

旋转矩阵 to 旋转向量

θ

=

cos

1

(

t

r

a

c

e

(

R

)

1

2

)

,

t

r

a

c

e

(

R

)

=

r

11

+

r

22

+

r

33

\theta = \cos^{-1}(\frac{trace(R)-1}{2}), trace(R) = r_{11}+r_{22}+r_{33}

θ=cos−1(2trace(R)−1​),trace(R)=r11​+r22​+r33​

ω

=

1

2

sin

θ

[

r

32

r

23

r

13

r

31

r

21

r

12

]

=

1

2

sin

θ

[

R

R

T

]

ˇ

\omega = \frac{1}{2\sin\theta}\left[ \begin{array}{c} r_{32} -r_{23} \\ r_{13}-r_{31} \\ r_{21}-r_{12} \end{array}\right] = \frac{1}{2\sin\theta} [R - R^T]\check{\ }

ω=2sinθ1​⎣⎡​r32​−r23​r13​−r31​r21​−r12​​⎦⎤​=2sinθ1​[R−RT] ˇ

θ

0

\theta \neq 0

θ​=0,双解

2

π

θ

,

θ

[

0

,

2

π

)

2\pi - \theta, \theta \in [0, 2\pi)

2π−θ,θ∈[0,2π)

θ

=

0

\theta = 0

θ=0,奇异(singularity),

ω

\omega

ω任取

四元数

Q

=

(

x

,

y

,

z

,

w

)

Q = (x, y, z, w)

Q=(x,y,z,w)

共轭(conjugate)

Q

=

(

x

,

y

,

z

,

w

)

=

(

q

,

w

q

)

Q^*=(-x, -y, -z, w)=(q, w_q)

Q∗=(−x,−y,−z,w)=(q,wq​)大小

Q

2

=

x

2

+

y

2

+

z

2

+

w

2

||Q||^2 = x^2 + y^2 + z^2 + w^2

∣∣Q∣∣2=x2+y2+z2+w2逆

Q

1

=

Q

Q

2

Q^{-1} = \frac{Q^*}{||Q||^2}

Q−1=∣∣Q∣∣2Q∗​单位向量(identity)

(

0

,

0

,

0

,

1

)

(0, 0, 0, 1)

(0,0,0,1)乘法

Q

P

=

(

w

q

w

p

q

T

p

,

w

q

p

+

w

p

q

+

q

×

p

)

Q\cdot P = (w_qw_p-q^Tp, w_qp+w_pq+q\times p)

Q⋅P=(wq​wp​−qTp,wq​p+wp​q+q×p)

旋转向量 to 四元数

Q

=

(

ω

sin

(

θ

/

2

)

,

cos

(

θ

/

2

)

)

Q = (\omega\sin(\theta/2),\cos(\theta/2))

Q=(ωsin(θ/2),cos(θ/2))

四元数 to 旋转向量

θ

=

2

cos

1

w

q

\theta = 2 \cos^{-1} w_q

θ=2cos−1wq​

ω

=

q

/

sin

(

θ

/

2

)

,

0

i

f

θ

=

0

\omega = q/\sin(\theta/2), 0 if\theta=0

ω=q/sin(θ/2),0ifθ=0

旋转 + 平移(仿射变换,affine transformation)

(

p

,

R

)

S

E

(

3

)

(p, R) \in SE(3)

(p,R)∈SE(3),特殊欧几里得群(special Euclidean group)

g

(

q

)

=

p

+

R

q

g(q) = p + Rq

g(q)=p+Rq

g

(

v

)

=

g

(

s

)

g

(

r

)

=

R

(

s

r

)

=

R

v

g_*(v) = g(s) - g(r) = R(s-r) = Rv

g∗​(v)=g(s)−g(r)=R(s−r)=Rv

齐次表示(Homogeneous representation)

point

q

ˉ

=

[

q

1

q

2

q

3

1

]

\bar{q} = \left[\begin{array}{c} q_1 \\ q_2 \\ q_3 \\ 1 \end{array}\right]

qˉ​=⎣⎢⎢⎡​q1​q2​q3​1​⎦⎥⎥⎤​,vector

v

ˉ

=

[

v

1

v

2

v

3

0

]

\bar{v} = \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ 0 \end{array}\right]

vˉ=⎣⎢⎢⎡​v1​v2​v3​0​⎦⎥⎥⎤​,

g

ˉ

=

[

R

p

0

1

]

\bar{g} = \left[\begin{array}{c} R & p \\ 0 & 1 \end{array}\right]

gˉ​=[R0​p1​]

g

ˉ

1

=

[

R

T

R

T

p

0

1

]

\bar{g}^{-1} = \left[\begin{array}{c} R^T & -R^Tp \\ 0 & 1 \end{array}\right]

gˉ​−1=[RT0​−RTp1​]

指数坐标(twist)

旋转轴

ω

\omega

ω,转角

θ

\theta

θ,轴过点

q

q

q (twist)

ξ

=

(

v

,

ω

)

s

e

(

3

)

\xi=(v, \omega) \in se(3)

ξ=(v,ω)∈se(3)

纯旋转

通过线速度和角速度的关系

p

˙

(

t

)

=

θ

˙

r

=

ω

×

(

p

(

t

)

q

)

\dot{p}(t) = \dot{\theta}r = \omega \times (p(t)-q)

p˙​(t)=θ˙r=ω×(p(t)−q) 其中使用常数单位时间角速度

θ

˙

=

1

\dot{\theta}=1

θ˙=1 齐次形式

[

p

˙

0

]

=

[

ω

^

ω

^

q

0

0

]

[

p

1

]

\left[\begin{array}{c} \dot{p} \\ 0 \end{array}\right] = \left[\begin{array}{c} \hat{\omega} & -\hat{\omega}q \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} p \\ 1 \end{array}\right]

[p˙​0​]=[ω^0​−ω^q0​][p1​] 令

ξ

^

=

[

ω

^

ω

^

q

0

0

]

\hat{\xi} = \left[\begin{array}{c} \hat{\omega} & -\hat{\omega}q \\ 0 & 0 \end{array}\right]

ξ^​=[ω^0​−ω^q0​],有

p

˙

ˉ

=

ξ

^

p

ˉ

\bar{\dot{p}}=\hat{\xi}\bar{p}

p˙​ˉ​=ξ^​pˉ​ 差分方程积分得到

q

ˉ

(

t

)

=

e

ξ

^

t

q

ˉ

(

0

)

\bar{q}(t) = e^{\hat{\xi}t}\bar{q}(0)

qˉ​(t)=eξ^​tqˉ​(0)

v

=

ω

^

q

v =-\hat{\omega}q

v=−ω^q

纯位移

ω

=

0

\omega=0

ω=0时,

v

v

v作为纯平移运动的速度,有

ξ

^

=

[

0

v

0

0

]

\hat{\xi} = \left[\begin{array}{c} 0 & v \\ 0 & 0 \end{array}\right]

ξ^​=[00​v0​]

twist to 变换矩阵

代入

t

=

θ

t=\theta

t=θ,

θ

\theta

θ个单位时间,有

e

ξ

^

θ

=

I

+

ξ

^

θ

+

(

ξ

^

θ

)

2

2

!

+

.

.

.

e^{\hat{\xi}\theta} = I + \hat{\xi}\theta + \frac{(\hat{\xi}\theta)^2}{2!} + ...

eξ^​θ=I+ξ^​θ+2!(ξ^​θ)2​+...

ω

=

0

\omega=0

ω=0

e

ξ

^

θ

=

I

+

ξ

^

θ

e^{\hat{\xi}\theta} = I + \hat{\xi}\theta

eξ^​θ=I+ξ^​θ

else 构造辅助twist

ξ

^

=

g

1

ξ

^

g

=

[

ω

^

ω

ω

T

v

0

0

]

\hat{\xi'} = g'^{-1}\hat{\xi}g' = \left[\begin{array}{c} \hat{\omega} & \omega \omega^T v \\ 0 & 0 \end{array}\right]

ξ′^​=g′−1ξ^​g′=[ω^0​ωωTv0​],其中

g

=

[

I

ω

×

v

0

1

]

g' = \left[\begin{array}{c}I & \omega \times v \\ 0 & 1 \end{array}\right]

g′=[I0​ω×v1​] 可证有

e

ξ

^

θ

=

e

g

(

ξ

^

θ

)

g

1

=

g

e

ξ

^

θ

g

1

e^{\hat{\xi}\theta} = e^{ g' ( \hat{\xi'} \theta ) g'^{-1}} = g' e^{ \hat{\xi'} \theta} g'^{-1}

eξ^​θ=eg′(ξ′^​θ)g′−1=g′eξ′^​θg′−1 而计算

e

ξ

^

θ

e^{ \hat{\xi'} \theta}

eξ′^​θ比较方便,因为有

(

ξ

^

)

2

=

[

ω

^

2

0

0

0

]

(\hat{\xi'})^2 = \left[\begin{array}{c} \hat{\omega}^2 & 0 \\ 0 & 0 \end{array}\right]

(ξ′^​)2=[ω^20​00​],

(

ξ

^

)

3

=

[

ω

^

3

0

0

0

]

(\hat{\xi'})^3 = \left[\begin{array}{c} \hat{\omega}^3 & 0 \\ 0 & 0 \end{array}\right]

(ξ′^​)3=[ω^30​00​]

泰勒展开并计算,得到

e

ξ

^

θ

=

[

e

ω

^

θ

ω

ω

T

v

θ

0

1

]

e^{ \hat{\xi'} \theta} = \left[\begin{array}{c} e^{\hat{\omega} \theta} & \omega \omega^T v \theta \\ 0 & 1 \end{array}\right]

eξ′^​θ=[eω^θ0​ωωTvθ1​]

e

ξ

^

θ

=

[

e

ω

^

θ

(

I

e

ω

^

θ

)

(

ω

×

v

)

+

ω

ω

T

v

θ

0

1

]

e^{ \hat{\xi} \theta} = \left[\begin{array}{c} e^{\hat{\omega} \theta} & (I-e^{\hat{\omega} \theta}) (\omega \times v) + \omega \omega^T v \theta \\ 0 & 1 \end{array}\right]

eξ^​θ=[eω^θ0​(I−eω^θ)(ω×v)+ωωTvθ1​]

变换矩阵 to twist

R

=

I

R = I

R=I,平移

ξ

=

(

p

/

p

,

0

)

,

θ

=

p

\xi = (p/||p||, 0), \theta = ||p||

ξ=(p/∣∣p∣∣,0),θ=∣∣p∣∣else,旋转

ω

\omega

ω 和

θ

\theta

θ 通过 旋转矩阵 to 旋转向量 获得

v

=

A

1

p

v = A^{-1}p

v=A−1p,

A

=

(

I

e

ω

^

θ

)

ω

^

+

ω

ω

T

θ

A = (I-e^{\hat{\omega} \theta}) \hat{\omega} + \omega \omega^T \theta

A=(I−eω^θ)ω^+ωωTθ

Screws

旋转加平移(同一个轴)

表示

pitch

h

=

d

/

θ

=

t

r

a

n

s

l

a

t

i

o

n

/

r

o

t

a

t

i

o

n

h=d/\theta=translation/rotation

h=d/θ=translation/rotationaxis

l

=

{

q

+

λ

ω

}

,

q

=

0

i

f

θ

=

0

l = \{q+\lambda\omega\}, q=0\ if\ \theta =0

l={q+λω},q=0 if θ=0magnitude

M

=

θ

i

f

θ

0

e

l

s

e

d

M=\theta\ if\ \theta\ne0\ else\ d

M=θ if θ​=0 else d

g

p

=

q

+

e

ω

^

θ

(

p

q

)

+

h

θ

ω

gp = q + e^{ \hat{\omega} \theta}(p-q) + h\theta \omega

gp=q+eω^θ(p−q)+hθω

g

=

e

ξ

^

θ

=

[

e

ω

^

θ

(

I

e

ω

^

θ

)

q

+

h

θ

ω

0

1

]

g = e^{ \hat{\xi} \theta} = \left[\begin{array}{c} e^{\hat{\omega} \theta} & (I-e^{\hat{\omega} \theta}) q + h \theta \omega \\ 0 & 1 \end{array}\right]

g=eξ^​θ=[eω^θ0​(I−eω^θ)q+hθω1​]

v

=

ω

×

q

+

h

w

v = -\omega\times q + hw

v=−ω×q+hw

twist to screw

θ

0

\theta\ne0

θ​=0

h

=

ω

T

v

ω

2

h=\frac{\omega^T v}{||\omega||^2}

h=∣∣ω∣∣2ωTv​

l

=

{

ω

×

v

ω

2

+

λ

ω

}

l = \{\frac{\omega\times v}{||\omega||^2}+\lambda\omega\}

l={∣∣ω∣∣2ω×v​+λω}

M

=

θ

M = \theta

M=θ

θ

=

0

\theta=0

θ=0

h

=

h=\infin

h=∞

l

=

{

0

+

λ

v

}

l = \{0+\lambda v\}

l={0+λv}

M

=

d

M = d

M=d

screw to twist

h

=

h=\infin

h=∞

ω

=

0

\omega = 0

ω=0

v

v

v from

l

l

l

θ

=

M

\theta = M

θ=M

else

ω

\omega

ω from

l

l

l

v

=

ω

×

q

+

h

w

v = -\omega\times q + hw

v=−ω×q+hw

θ

=

M

\theta = M

θ=M

速度

旋转(角速度)

空间坐标系A

q

a

(

t

)

=

R

a

b

(

t

)

q

b

q_a(t) = R_{ab}(t) q_b

qa​(t)=Rab​(t)qb​

v

q

a

(

t

)

=

R

˙

a

b

(

t

)

q

b

=

R

˙

a

b

(

t

)

R

a

b

T

(

t

)

R

a

b

(

t

)

q

b

=

ω

^

a

b

a

(

t

)

q

a

(

t

)

v_{q_a}(t) = \dot{R}_{ab}(t) q_b = \dot{R}_{ab}(t) R_{ab}^T(t) R_{ab}(t) q_b = \hat{\omega}^a_{ab}(t) q_a(t)

vqa​​(t)=R˙ab​(t)qb​=R˙ab​(t)RabT​(t)Rab​(t)qb​=ω^aba​(t)qa​(t)

物体坐标系B

v

q

b

(

t

)

=

R

a

b

T

(

t

)

v

q

a

(

t

)

=

R

a

b

T

(

t

)

R

˙

a

b

(

t

)

q

b

=

ω

^

a

b

b

(

t

)

q

b

v_{q_b}(t) = R_{ab}^T(t) v_{q_a}(t) = R_{ab}^T(t) \dot{R}_{ab}(t) q_b = \hat{\omega}^b_{ab}(t) q_b

vqb​​(t)=RabT​(t)vqa​​(t)=RabT​(t)R˙ab​(t)qb​=ω^abb​(t)qb​

ω

a

b

a

(

t

)

=

R

a

b

ω

a

b

b

(

t

)

\omega^a_{ab}(t) = R_{ab} \omega^b_{ab}(t)

ωaba​(t)=Rab​ωabb​(t) 这里是指角速度,不是旋转向量

ω

a

b

a

\omega^a_{ab}

ωaba​表示,(上标)a坐标系下,(下标)b到a的变换

物体坐标系下的表示不是指点q在相对于物体坐标系的速度(恒为0),而是指点q相对以其他坐标系的速度向量转换到物体坐标系下。

旋转 + 平移(刚体速度)

V

^

a

b

a

=

g

˙

a

b

g

a

b

1

=

[

R

˙

a

b

p

˙

a

b

0

0

]

[

R

a

b

T

R

a

b

T

p

a

b

0

1

]

=

[

R

˙

a

b

R

a

b

T

R

˙

a

b

R

a

b

T

p

a

b

+

p

˙

a

b

0

0

]

\hat{V}^a_{ab} = \dot{g}_{ab} g^{-1}_{ab} = \left[\begin{array}{c} \dot{R}_{ab} & \dot{p}_{ab} \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} R^T_{ab} & -R^T_{ab}p_{ab} \\ 0 & 1 \end{array}\right] = \left[\begin{array}{c} \dot{R}_{ab} R^T_{ab} & -\dot{R}_{ab} R^T_{ab}p_{ab} + \dot{p}_{ab} \\ 0 & 0 \end{array}\right]

V^aba​=g˙​ab​gab−1​=[R˙ab​0​p˙​ab​0​][RabT​0​−RabT​pab​1​]=[R˙ab​RabT​0​−R˙ab​RabT​pab​+p˙​ab​0​]

v

q

a

=

ω

^

a

b

a

q

a

ω

^

a

b

a

p

a

b

+

p

˙

a

b

=

ω

^

a

b

a

(

q

a

p

a

b

)

+

p

˙

a

b

v_{q_a} = \hat{\omega}^a_{ab} q_a - \hat{\omega}^a_{ab} p_{ab} + \dot{p}_{ab} = \hat{\omega}^a_{ab} (q_a - p_{ab}) + \dot{p}_{ab}

vqa​​=ω^aba​qa​−ω^aba​pab​+p˙​ab​=ω^aba​(qa​−pab​)+p˙​ab​ (绕原点旋转的速度+原点速度)

V

^

a

b

b

=

g

a

b

1

g

˙

a

b

=

[

R

a

b

T

R

˙

a

b

R

a

b

T

p

˙

a

b

0

0

]

\hat{V}^b_{ab} = g^{-1}_{ab} \dot{g}_{ab} = \left[\begin{array}{c} R^T_{ab} \dot{R}_{ab} & R^T_{ab} \dot{p}_{ab} \\ 0 & 0 \end{array}\right]

V^abb​=gab−1​g˙​ab​=[RabT​R˙ab​0​RabT​p˙​ab​0​]

v

q

b

=

ω

^

a

b

b

q

b

+

R

a

b

T

p

˙

a

b

=

R

a

b

T

ω

a

b

a

^

R

a

b

T

(

q

a

p

a

b

)

+

R

a

b

T

p

˙

a

b

v_{q_b} = \hat{\omega}^b_{ab} q_{b} + R^T_{ab} \dot{p}_{ab} = \widehat{R^T_{ab}\omega^a_{ab}} R^T_{ab} (q_{a} - p_{ab}) + R^T_{ab} \dot{p}_{ab}

vqb​​=ω^abb​qb​+RabT​p˙​ab​=RabT​ωaba​

​RabT​(qa​−pab​)+RabT​p˙​ab​

=

R

a

b

T

ω

^

a

b

a

(

q

a

p

a

b

)

+

R

a

b

T

p

˙

a

b

=

R

a

b

T

v

q

a

= R^T_{ab}\hat{\omega}^a_{ab} (q_{a} - p_{ab}) + R^T_{ab} \dot{p}_{ab} = R^T_{ab} v_{q_a}

=RabT​ω^aba​(qa​−pab​)+RabT​p˙​ab​=RabT​vqa​​ (坐标系B下:绕原点旋转的速度+原点速度) (相当于将所有东西搬到坐标系B计算)

V

^

a

b

a

=

g

a

b

V

^

a

b

b

g

a

b

1

\hat{V}^a_{ab} = g_{ab} \hat{V}^b_{ab} g^{-1}_{ab}

V^aba​=gab​V^abb​gab−1​

V

a

b

a

=

A

d

g

a

b

V

a

b

b

V^a_{ab} = Ad_{g_{ab}} V^b_{ab}

Vaba​=Adgab​​Vabb​ (伴随变换,adjoint transformation)

A

d

g

=

[

R

p

^

R

0

R

]

Ad_g = \left[\begin{array}{c} R & \hat{p} R \\ 0 & R \end{array}\right]

Adg​=[R0​p^​RR​]

A

d

g

1

=

[

R

T

R

T

p

^

0

R

T

]

=

A

d

g

1

Ad^{-1}_g = \left[\begin{array}{c} R^T & -R^T \hat{p} \\ 0 & R^T \end{array}\right] = Ad_{g^{-1}}

Adg−1​=[RT0​−RTp^​RT​]=Adg−1​

因为

g

a

b

(

θ

)

=

e

ξ

^

θ

g

a

b

(

0

)

g_{ab}(\theta) = e^{\hat{\xi}\theta} g_{ab}(0)

gab​(θ)=eξ^​θgab​(0)

g

˙

a

b

(

θ

)

=

ξ

^

θ

˙

e

ξ

^

θ

g

a

b

(

0

)

\dot{g}_{ab}(\theta) = \hat{\xi}\dot{\theta}e^{\hat{\xi}\theta} g_{ab}(0)

g˙​ab​(θ)=ξ^​θ˙eξ^​θgab​(0) 所以

V

^

a

b

a

=

g

˙

g

1

=

(

ξ

^

θ

˙

e

ξ

^

θ

g

a

b

(

0

)

)

(

g

a

b

1

(

0

)

e

ξ

^

θ

)

=

ξ

^

θ

˙

\hat{V}^a_{ab} = \dot{g} g^{-1} = (\hat{\xi}\dot{\theta}e^{\hat{\xi}\theta} g_{ab}(0)) (g^{-1}_{ab}(0)e^{-\hat{\xi}\theta}) = \hat{\xi}\dot{\theta}

V^aba​=g˙​g−1=(ξ^​θ˙eξ^​θgab​(0))(gab−1​(0)e−ξ^​θ)=ξ^​θ˙

V

^

a

b

b

=

g

1

g

˙

=

(

g

a

b

1

(

0

)

e

ξ

^

θ

)

(

ξ

^

θ

˙

e

ξ

^

θ

g

a

b

(

0

)

)

=

A

d

g

1

ξ

^

θ

˙

\hat{V}^b_{ab} = g^{-1} \dot{g} = (g^{-1}_{ab}(0)e^{-\hat{\xi}\theta}) (\hat{\xi}\dot{\theta}e^{\hat{\xi}\theta} g_{ab}(0)) = \widehat{Ad_{g_{-1}}\xi}\dot{\theta}

V^abb​=g−1g˙​=(gab−1​(0)e−ξ^​θ)(ξ^​θ˙eξ^​θgab​(0))=Adg−1​​ξ

​θ˙

坐标系变换

V

a

c

a

=

V

a

b

a

+

A

d

g

a

b

V

b

c

b

V^a_{ac} = V^a_{ab} + Ad_{g_{ab}}V^b_{bc}

Vaca​=Vaba​+Adgab​​Vbcb​

V

a

c

c

=

A

d

g

c

b

V

a

b

b

+

V

b

c

c

V^c_{ac} = Ad_{g_{cb}}V^b_{ab} + V^c_{bc}

Vacc​=Adgcb​​Vabb​+Vbcc​

V

a

b

b

=

V

b

a

b

V^b_{ab} = -V^b_{ba}

Vabb​=−Vbab​(相对速度)

当两个坐标系相对固定,则他们的速度是一致的 例如B和C固定,则

V

a

c

a

=

V

a

b

a

V^a_{ac} = V^a_{ab}

Vaca​=Vaba​

Wrench

F

=

[

f

τ

]

F = \left[ \begin{array}{c} f \\ \tau \end{array} \right]

F=[fτ​],force + torch

δ

W

=

V

F

\delta W = V \cdot F

δW=V⋅F 瞬时做工

坐标转换

基于等价做工性质

B和C是相对固定的坐标系

V

a

c

c

F

c

=

V

a

b

b

F

b

V^c_{ac} \cdot F_c = V^b_{ab} \cdot F_b

Vacc​⋅Fc​=Vabb​⋅Fb​

=

V

a

c

b

F

b

= V^b_{ac} \cdot F_b

=Vacb​⋅Fb​

=

(

A

d

g

b

c

V

a

c

c

)

F

b

= (Ad_{g_{bc}} V^c_{ac}) \cdot F_b

=(Adgbc​​Vacc​)⋅Fb​

=

V

a

c

c

A

d

g

b

c

T

F

b

= V^c_{ac} \cdot Ad_{g_{bc}}^T F_b

=Vacc​⋅Adgbc​T​Fb​

则有

F

c

=

A

d

g

b

c

T

F

b

F_c = Ad_{g_{bc}}^T F_b

Fc​=Adgbc​T​Fb​

力作用在转换后的坐标系原点

wrench to screw

f

0

f \ne 0

f​=0

h

=

h = \infin

h=∞

M

=

τ

M = ||\tau||

M=∣∣τ∣∣

l

=

{

0

+

λ

τ

M

}

l = \{0+\lambda \frac{\tau}{M} \}

l={0+λMτ​}

f

=

0

f=0

f=0

h

=

f

T

τ

f

2

h = \frac{f^T \tau}{||f||^2}

h=∣∣f∣∣2fTτ​

M

=

f

M = ||f||

M=∣∣f∣∣

l

=

{

f

×

τ

f

2

+

λ

f

M

}

l = \{\frac{f \times \tau}{||f||^2}+\lambda \frac{f}{M} \}

l={∣∣f∣∣2f×τ​+λMf​}

screw to wrench

h

=

h=\infin

h=∞

f

=

0

f = 0

f=0

τ

\tau

τ from

l

l

l 乘

M

M

M

else

f

f

f from

l

l

l

τ

=

f

×

q

+

h

f

\tau = -f\times q + hf

τ=−f×q+hf 乘

M

M

M

互逆螺旋(reciprocal screws)

V

F

=

0

V \cdot F = 0

V⋅F=0

对应的螺旋表示

S

V

S_V

SV​和

S

F

S_F

SF​就是互逆螺旋

互逆乘积

定义两个螺旋的互逆乘积为(就是从

F

V

F \cdot V

F⋅V展开得来)

S

1

S

2

=

M

1

M

2

(

(

h

1

+

h

2

)

cos

α

d

sin

α

)

S_1 \odot S_2 = M_1 M_2((h_1+h_2)\cos\alpha - d \sin\alpha)

S1​⊙S2​=M1​M2​((h1​+h2​)cosα−dsinα)

其中,

α

=

a

t

a

n

2

(

ω

1

×

ω

2

n

,

ω

1

ω

2

)

\alpha = atan2(\omega_1 \times \omega_2 \cdot n, \omega_1 \cdot \omega_2)

α=atan2(ω1​×ω2​⋅n,ω1​⋅ω2​),

l

1

l_1

l1​

l

2

l_2

l2​之间的距离线段为

d

n

dn

dn,

d

d

d为长度,

n

n

n为方向

则有,互逆螺旋的互逆乘积为0

螺旋系统(system of screws)的纬度

r

r

r 和其对应的互逆螺旋系统(reciprocal screw system)的纬度

n

n

n 有关系

r

+

n

=

6

r+n=6

r+n=6

Copyright © 2022 1994世界杯_1954年世界杯 - hengshuifu.com All Rights Reserved.